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A method for the trifluoromethylation of enamines using Me3SiCF3 leading to a-CF3-substituted amines is
described. The reaction is promoted by hydrofluoric acid generated from KHF2 and either trifluoroacetic
or triflic acid, and involves protonation of the enamine followed by transfer of the CF3-carbanion from the
silicon reagent to the cationic electrophile.

� 2009 Elsevier Ltd. All rights reserved.
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Amines bearing a trifluoromethyl group at the a-position con-
stitute an important class of biologically active compounds.1

Among methods for the synthesis of these compounds,2 the ap-
proach based on the direct introduction of the CF3 group via nucle-
ophilic trifluoromethylation is arguably the most effective, owing
to the ready availability of electrophilic precursors with a C@N
bond.3–5 In the latter processes, the combination of trifluorometh-
yltrimethylsilane (Me3SiCF3, the Ruppert–Prakash reagent) and a
Lewis base serves as an equivalent of a trifluoromethyl carban-
ion.4–6

Recently, we introduced a method for the nucleophilic trifluo-
romethylation of imines with Me3SiCF3 under acidic conditions,
where hydrofluoric acid, generated in situ, played the key role as
an activator.7 Herein we report the application of this methodology
for the trifluoromethylation of enamines leading to various a-CF3-
substituted amines.8

The general mechanism of the reaction is shown in Scheme 1.
Hydrofluoric acid, which is generated in situ from potassium
hydrogen difluoride and a strong acid (TfOH or TFA), reversibly
protonates the enamine substrate 1 to give the iminium ion
and hydrodifluoride anion. Subsequent activation of the silane
followed by transfer of the CF3-group provides product 2.
According to this mechanism, the reaction should proceed faster
for enamines giving, upon protonation, more stable iminium
ions.

The use of HF is crucial, since it provides the optimal bal-
ance required for the activation of both the enamine and the si-
lane, and at the same time minimizing decomposition of the
ll rights reserved.
silicon reagent with the formation of trifluoromethane. Indeed,
earlier we tried to employ carboxylic acids of different
strengths, and even with the optimal conditions, the scope of
substrates was quite narrow and product yields were
moderate.9

Following our previous observations on reactions of imines,7 in
this work, we used two protocols for the trifluoromethylation of
enamines (Table 1). Method A, in which trifluoroacetic acid is used
to generate HF, is suitable for more reactive substrates, whereas
method B requiring expensive triflic acid and a larger excess of
the silane is more general and applicable for less reactive
enamines.



Table 1
Trifluoromethylation of enamines 1

Method Me3SiCF3
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Acid 
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A 2.0 TFA (1.5) 1.0 MeCN R1
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1
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Table 1 (continued)

Entry Substrate Method Product Yield of 2,%a

16
NH O

OMe

Bn 1l A
NH

Bn

F3C

O

OMe

2l 36
17 B 55

a Isolated yield.
b Reaction time 6 h.
c Yield is denoted in parentheses determined by NMR, the losses upon isolation are due to the volatility of the product.
d The relative configurations were determined by 2D-NOESY experiments.
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Enamines 1a–e derived from ketones and aldehydes gave
trifluoromethylated products 2a–e in good yields according to
method A (entries 1–5). The substrates 1f–k bearing an ester
group at the b-position also took part in the trifluoromethyla-
tion reaction affording products 2f–k, though in order to ob-
tain good yields, method B should be used. The decreased
reactivity of enamines 1f–k compared to that of enamines
1a–e is likely to be associated with the presence of the ester
group, which makes the formation of an iminium ion less
favorable. Thus, the protonation of ester-substituted enamines
can form cations 3–5 which exist in equilibrium, and subse-
quent reaction of either of these species can give the desired
product (Scheme 2).

Trifluoromethylation of substrate 1l containing an N–H frag-
ment gave the desired product 2l in moderate yields of 36–
55% (entries 16–17). Probably, the diminished reactivity of 1l
is due to the presence of an intramolecular hydrogen bond,
which imparts additional stability to the enamine and decreases
its basicity (Fig. 1). In this regard, we were surprised to find, that
the cyclic enamine 1m having a fixed anti arrangement of the
N–H and ester moieties, proved to be completely unreactive.
Compound 1n also did not undergo trifluoromethylation, even
under the conditions of method B. The latter observations sug-
gest that a cis-arrangement of amino and ester fragments may
be necessary for the reaction to proceed, presumably owing to
formation of a cyclic cationic intermediate species 5 stabilized
by a hydrogen bond.

In the reaction of substrate 1o containing an a-hydrogen
atom at the enamine double bond, the trimethyl ester of ben-
zene-1,3,5-tricarboxylic acid 6 was obtained exclusively, while
the product of trifluoromethylation was detected only in a trace
amount (Scheme 3). The formation of 6 can be readily explained
by the increased reactivity of the sterically unhindered iminium
cation that interacts with enamine 1o, leading to trimerization
and aromatization.10
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In summary, a new method for the trifluoromethylation of en-
amines using the Ruppert–Prakash reagent has been described.11,12

The method gives high yields of products for reactions of conven-
tional enamines, as well as for enamines substituted with an ester
group. The key feature of the reaction is the transfer of a trifluoro-
methyl carbanion to the electrophilic species generated from en-
amines under acidic conditions.
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